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Abstract. We propose a numerical algorithm based on the recursion method to calculate the 
conductivity of a disordered system described by a tight-binding Hamiltonian. It has the 
advantage that the density of states and the conductivity can be obtained in a single recursion 
calculation. The method is applied to simple one- and two-dimensional incommensurate 
systems in order to check the validity of the assumptions made and the numerical efficiency. 
The calculated conductivity shows a clear drop when the Fermi energy crosses a mobility 
edge. Potential applications of this work to other systems are discussed. 

1. Introduction 

There are two general approaches to calculating transport properties in disordered 
materials. 

(i) In quasi-one-dimensional (ID) systems the transfer matrix technique [l]  can be 
used to calculate the transmission or reflection coefficients, which are associated with 
the conductance by Landauer’s formula [2]. This type of approach has been used in [3] 
for wires of different cross sections to study the Anderson transition in three dimensions 
as a limiting case. 

(ii) The conductivity can be calculated using the Kubo-Greenwood formula, derived 
as a special case of the fluctuation-dissipation theorem [4]. It has been generally treated 
in a mean-field approximation because direct calculations require an enormous amount 
of computing time, even for moderate-size systems [5]. However, the mean field 
approaches either neglect [6] or estimate roughly [7] the vertex part of the conductivity, 
destroying the quantum interference that gives rise to localisation in disordered systems. 

In this paper we devise a formalism based on the recursion method in [8] to evaluate 
the Kubo-Greenwood formula. It avoids the shortcomings of the mean-field approxi- 
mations and is very efficient from the numerical point of view. 

The recursion method is usually used for the calculation of the electronic local 
densities of states. Starting from a local orbital, it constructs a new basis in which the 
Hamiltonian is tridiagonal. However, for the conductivity there is another relevant 
operator apart from the Hamiltonian, namely the momentum operator. 
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In previous work [9] it was shown that a generalised matrix form of Dyson's equation 
may be written which relates a product of Green functions that essentially gives the 
conductivitywith the momentum operator and the Hamiltonian. Although it isin general 
not possible to tridiagonalise simultaneously the Hamiltonian and the momentum oper- 
ator, we show in this work that the use of the basis obtained by the usual recursion 
method, with a conveniently chosen starting orbital, allows the calculation of both the 
density of states and the conductivity in a single recursion algorithm. However, one 
should note that the effects of truncation of the recursion basis set are different for each 
property and must be studied separately. 

A different idea, also based on the recursion method, was proposed in [lo] to 
calculate the conductivity of disordered two-dimensional (2D) and three-dimensional 
(3D) systems. The recursion method was used to obtain approximate eigenstates of 
the Hamiltonian, which allowed the matrix elements of the Green functions and the 
momentum operator in the Kubo formula to be evaluated. Our approach is different as 
it does not require knowledge of the eigenvectors but only the recursion basis set. We 
believe that our presentation of the problem in a matrix form plus the adequate choice 
of the starting vector make a simpler numerical solution possible, more in the spirit of 
the original recursion method [8]. 

This paper is organised as follows. In § 2 we first write the Kubo-Greenwood formula 
in a notation that is convenient for calculation in a tight-binding scheme. We then show 
that a continued-fraction expansion for the conductivity of a ID system is possible and 
then we introduce our approximation that uses the recursion method for the general 
case (more than one dimension). Section 3 contains the numerical examples used to test 
the method. We started with a ID incommensurate system, well known to us from 
previous work [ l l ] ,  that shows an abrupt change in the localisation length (possibly a 
mobility edge). As a second step, we studied a 2D model that also shows a mobility edge. 
The model was constructed in such a way that its density of states and conductivity could 
be obtained from the corresponding properties of the previous ID example and therefore 
was useful to check the present method. 

2. Calculation of the conductivity 

2.1. The Kubo formula in a convenient tight-binding notation 

The DC electrical conductivity in the linear response approximation is given by the Kubo- 
Greenwood formula. At zero temperature and for non-interacting electrons, it can be 
written in terms of Green functions as [6] 

axx(E) = ( K / Q  1 Trip, W G +  W l P x  Im[G+ (E111 (1) 
where K is a universal constant, Q is the system volume, E is the Fermi energy and the 
Green functions are defined by G(z )  = ( z  - H)-l and 

G'(E) = lim[G(E i iq)] 
V+O 

We consider the Hamiltonian defined in the site representation as 

and assume interactions only between first neighbours with a fixed value V .  This is taken 
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as unit of energy. The diagonal element is a variable assumed to be distributed 
according to a different law for each non-periodic problem. 

For simplicity, we shall consider only simple cubic ID, 2D or 3D lattices and take the 
lattice parameter as unit of length. The momentum operator p ,  can be replaced in (1) 
by the commutator C, = [ H ,  x ]  (which is real in the site representation) with the proper 
redefinition of the constant K.  If j + 1 indicates the first neighbour of site j in the positive 
x direction, the operator C, may be expressed as 

C, = E ( I i>( j  + 1I - I i  + l > ( i I ) .  (3) 
1 

It is convenient to define new operators for the calculation of a,,(E). If 
S'(E) = G+(E)C,G'(E), then 

S + ( E )  - S - ( E )  = 2iG+(E)C, Im[G+(E)] 

Re[S+(E) - S - ( E ) ]  = -2Im[G+(E)]C, Im[G+(E)]. 

(4) 

( 5 )  

and 

Replacing ( 5 )  in (l), we obtain 

a,,(E) = (K/G!)Tr(C, Re[S+(E) - S - ( E ) ] }  

and, using (3), 

K 
a,, ( E )  = - c {[Si:+ 1 ( E )  - s:+ I] (E11 + [ S i +  1 ( E )  - s;+ I, (E) ] } .  (7)  

2Q I 

This expression is suitable for the evaluation of the conductivity in the site 
representation. 

2.2.  Recursion equations for one-dimensional systems 

It can be shown [9] that G' and S' satisfy a set of coupled integral equations. If 
we decompose H = h + V ,  where h is the diagonal part of the Hamiltonian and the 
corresponding Green function is g(z) = ( z  - h)- ' ,  then 

G' =g'(l  + VG')  (8) 

S' =g+(C,G' + VS').  (9) 

G' = g'(1 + VG') (10) 

and, replacing this in the definition of S', 

These two expressions can be formally put together in a single matrix equation 

where the generalised operators G' , g' and V are given by 

G' 0 g' 0 v o  
G ' = (  S' G +  1 g ' = ( ,  ,.i .=(, v). 

Note that each matrix element of a generalised operator is itself a 2 X 2 matrix, e.g. 

Because of the similarity of equation (10) to Dyson'sequation, allreal-space methods 
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used to calculate the density of states of disordered systems could be applied to obtain 
simultaneously, and within the same approximation, the density of states and the 
conductivity. For example, by direct analogy with the recursion method formalism, one 
can expand Goo as a continued fraction for the case of a semi-infinite chain (here the 
subscript 0 denotes the first site of the chain). This is so because in this particular 
example both Vand C, are tridiagonal in the site representation. The continued-fraction 
expansion will be given by 

Goo = (1 - goV01[1 - 91V12(1 - ' ' . ~ - ' 9 2 ~ * 1 1 - ' 9 1 ~ 1 0 ~ - ' 9 0  (11) 
where 

To evaluate the conductivity of an infinite linear chain using (7) we need the off-diagonal 
elements S$+l,  that are included in G;+l. These can be obtained by matching two 
continued fractions such as (11): one corresponding to the semi-infinite chain to the left 
of j ( G i )  and the other corresponding to the semi-infinite chain from j + 1 to the right 
(GT+lj+l). It is easy to show that the desired quantity is given by 

In the calculations that use the present formalism, the time required to evaluate the 
conductivity of a linear chain increases linearly with increase in the number of sites 
considered. In this sense it is equivalent to the algorithm proposed in [12]. 

2.3. Use of the recursion method in the general case 

In more than one dimension it is not possible to find a basis where both V and C, adopt 
a tridiagonal form. If we use the recursion method to obtain a basis that tridiagonalises 
H ,  then C, will in principle connect all the elements of this new basis. However, we can 
use the recursion basis set to evaluate the elements of S$+l in a way that is less time 
consuming than the calculation of all the matrix elements of G in the site representation 
(as was done in [5] for a Penrose lattice). 

Given a starting orbital Iuo), the equations which define the recursion method are 

boIu1) = Hluo) - aoluo) 

bllU2) = H I v d  - allul) - 6 100) (13) 

where the coefficients a,, b, are obtained imposing the orthonormalisation condition 
(v,lu,) = a,,, The diagonal element of the Green function (uolGlvo) is then given by a 
continued fraction 

(uolG(z)lvo) = [ z  - ao - Ibo12Ai(2)I-' 

A ~ ( z )  = [ Z  - - lb1l2A2(~)]- '  (14) 

A,(z> = [. - a, - lbn12An+l(z)l-1. 

As the system Hamiltonian in the recursion basis is equivalent to that of a semi-infinite 
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chain, it is also possible to obtain the matrix elements (uo(G(vn)  by replacement in the 
truncated set of coupled equations obtained from equation (8): 

n 

If after each recursion step the components of the states 1 U , )  in site representation 
are stored, then the elements of C, in the new basis can also be calculated using equation 
(3). Therefore, (volSluo) can be obtained in a single recursion calculation by 

nm 

The first step is to note which starting orbitals are useful for the conductivity 
calculation. If 

then 

which gives the quantity required in equation (7). There are also some properties 
satisfied by the matrix elements of G and C, that simplify the calculation. The coefficients 
6 ,  are determined from the recursion equations (13) except for an arbitrary phase, which 
can be chosen equal to zero [13]. It can be shown that this choice implies 

where we have omitted the subscript j in 1 unj) and shall continue to do so for simplicity. 
It is then sufficient to work with only one starting orbital 1 U : ) .  When equations (7), (18) 
and (19) are taken into account, the conductivity will be given by 

with 
N 

mn 

The exact result for an infinite system is obtained when the number N of steps in the 
recursion tends to infinity and the imaginary part of the energy 7 tends to zero. However, 
in a numerical calculation, 7 must be larger than N-' in order to eliminate statistical 
fluctuations due to the discreteness of the number of states. This is equivalent to the 
effect of an inelastic mean free path, beyond which localisation effects cannot be 
detected. 

Another approximation of any numerical work in a non-periodic system is to replace 
the trace operation in (7) by an average over a set of randomly selected sites. The number 
of sites that give representative results will be discussed in 3 3 in relation to the examples. 
Also, we show that it is possible to simplify further the computation by neglecting the 
elements (U,/ C,l U,)  when In - ml becomes sufficiently large. This is a consequence of 
the nature of the recursion basis states that spread out from the starting sites. 
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Figure 1. Site self-energies on a linear chain with 
an incommensurate zigzag modulation. The 
amplitude A and wavevector Q of the modulation 
are defined in the figure. 

L i ~ l i l . _  - 2 5  ; -1 5 -0  5 
I E 

Figure 2. (a) The exponential growth factor y ( E )  
of the wavefunctions and ( b )  the density n(E)  of 
statesforthesysteminfigurel withA = 1.5. Only 
half of the band is shown. 

3. Numerical examples 

3.1. One-dimensional incommensurate system 

Previous work on I D  incommensurate systems shows that they may have mobility edges 
in certain cases. In particular, the localisation of the wavefunctions in the case of a zigzag 
modulation of the site energies was studied by Llois and co-workers in [ 111 by the transfer 
matrix technique. They found a metal-insulator transition when the amplitude of the 
modulation approximately exceeded the half-band width. 

We have chosen one of their examples, with a well defined mobility edge, to test our 
present method. The zigzag modulation is shown in figure 1, and in figure 2 we reproduce 
the results of [ll] for the density n(E) of states and the exponential growth factor y ( E ) ,  
which is the inverse of the localisation length. Only the states in the lower sub-band are 
localised, and we expect to see this reflected by zero conductivity in our calculations. 

In figure 3 we show the results for n(E)  and a(E) obtained using N = 50, q = 0.025 
and averaging over 20 sites. As can be seen by comparing figures 2 and 3 this level of 
approximation is sufficient to obtain the main structure of the density of states. The 
conductivity is also in agreement with what could be expected from the character of the 
wavefunctions. However, further insight can be gained by studying the behaviour of 
a(E, q )  as a function of N .  Figure 4 shows a(q) for two values of the energy E and several 
values of N .  For E = -2.15, an energy below the mobility edge, the curves are almost 
independent of N even for the small values of N considered. This proves that the states 
are localised within the scales considered. In contrast, for E = -2.05 there is always a 
maximum of a as a function of q that moves towards q = 0 and increases in height 
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E 

Figure 3. Density of states (-) and conductivity (. . . .) for the same system as in figure 2, 
calculated with the recursion equations described in P 2.2. The conductivity is given in 
arbitrary units. 

I " " " " '  

t 

,--- 11 0 03 0.05 0 07 0.09 

rl 

i 0.006 0.010 0.014 0.018 

rl 
Figure 4. Conductivity as a function of N and 9 for (a )  E = -2.15 and ( b )  E = -2.1: -, 
N = 20; ----, N = 30; . . . ., N = 50. 

linearly with increasing N .  In this region of extended states, the conductivity seems to 
diverge with increasing N in the same way as in a periodic system. 

Another example with a larger modulation amplitude is shown in figure 5 .  The 
mobility edge in this case is closer to the centre of the band ( E  = - 1 .S). 

3.2. A two-dimensional incommensurate example 

It is possible to construct a 2~ system whose solution for both n(E)  and a(Ej can be 
obtained from the known results of a ID system. 
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- 0.6 
‘U 

- 
Lq 

F 0.k 

0.2 

E 
Figure 5. Same as figure 3 for a larger modulation amplitude A = 2 .2 .  

Let us consider a square lattice and indicate by lij) the basis orbital at site with 
coordinates x = i and y = j .  If the Hamiltonian can be decomposed as H = H, + Hy,  
where H, does not act on they coordinate and Hy does not act on the x coordinate, then 
it is easy to prove that the eigenstates are a direct product of two eigenstates of a ID 
problem. 

and ej are 
the site energies of the in incommensurate system already studied. In this case the 
density of states and the conductivity of the 2n system will be given by 

For example, we can take the site energy on site (i, j )  as + E ~ ,  where 

n(E)2D = 1 n(E - A)lDn(A)lD dA 

a ( ~ ) ~ ~  = J o ( ~  - A)lDn(A)lD dA. 

A similar idea was used in [14] to construct 2n models for vibrational motion in glasses. 
We have performed the convolutions numerically using the ID results for n(E)  and 

a(E)  shown in figure 5. The results are shown in figure 6 and can be used to compare 
with those obtained using the recursion method as explained in 8 2.3. The density of 
states of this 2~ example has three sub-bands in the region of negative energies and a 
large peak at E = 0, similar to a periodic square lattice, owing to the symmetry with 
respect to the permutation of x and y. The states of the lower sub-band must be localised 
because they arise as a direct product of the ID localised states. 

For the recursion 2n calculation, we have used a maximum of 40 levels in the 
continued fraction ( N  = 40) to avoid large computational costs. The imaginary part of 
the energy 7 was taken to be 0.05 (twice that used in the ID calculations shown in figures 
3 and 5) and the average was performed over 40 randomly selected sites. The result of 
this calculation is shown in figure 7 ,  and comparison with figure 6 gives very good 
agreement if one disregards the spurious structure in the central sub-band given by the 
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0.5 

- 
'" 
- . 0.3 
L" 

0.1 

E 
Figure 6. Density of states and conductivity for the 2D example obtained by numerical 
integration of equations (21). The starting ID system is that in figure 5.  

I 

E 
Figure 7. Density of states and conductivity for the 2D example calculated using the recursion 
basis as described in P 2.3. 

recursion procedure. We expect that a larger number of recursion steps will as usual 
increase the number and decrease the magnitude of the oscillations. 

In this calculation, we have neglected the matrix elements (v,~C,~u,) when In - m/ 
is large enough, as already mentioned in 5 2.3. To prove that this is a good approximation, 
we show in figure 8 the contribution from one site to the conductivity as a function of 
the cut-off In - mimax for two different energies. It is clear that the convergence is better 
for E = -4.9, where the states are expected to be localised but, in both cases, In - mlmax 
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Figure& Conductivityasafunctionofthecut-offln - mlmaxin thematrixelements(o,lC,lu,) 
for the ZD example for (a )  E = -4.9 and ( b )  E = -0.6. 

Figure 9. Conductivity asa function of Nand q for 
the ZD example and E = -4.9: -, N = 20; 

, N = 30; . . . . , N = 40. The lines for N = 30 
and N = 40 are almost superimposed. 
_ _ _ _  o.ae 0.16 0.24 0.32 

rl 

can be taken as 20 with an error of less than 10%. This allows us to increase the number 
of recursion steps, because fewer vectors must be stored simultaneously. 

Finally, in order to confirm the expected character of the wavefunctions at the lower 
band in the 2D example, we studied the behaviour of o against q for different values of 
N .  The results, shown in figure 9, indicate the existence of localised states. 

4. Conclusions 

We have proposed a new algorithm to calculate the conductivity of disordered systems 
based on the recursion method. The results obtained for ID and 2~ examples are 
encouraging as they show that the method is useful and numerically efficient. 

The application of this formalism to 3~ disordered systems (metals or semicon- 
ductors) is a natural extension of this work. 
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